CS641: Multimedia Database Systems
Project Report
SIP User Agent

By

Senthil kumar Duraiswamy

Project Brief

The project implements a SIP User Agent and integrates it with open source libraries to form a complete video conferencing tool. It involved implementation of Session Initiation Protocol as JAVA interfaces according to the specifications of the JAIN-SIP group. Using the interfaces a simple user agent which can send and receive calls was implemented. Since SIP is used mainly in signaling for video conferencing applications, the project has integrated the user agent with audio and video tools to form a complete video conferencing tool. RTP/RTCP libraries where used for data transport and JMSTUDIO was used for audio and video playback.
Since SIP is implemented as a java library many components like user agent, proxy server, registration server, routers that interface computer networks with telephone networks can used the services of the SIP Stack by making library calls. Other useful tools that can be build on the SIP library are voicemail/unified messaging server, multimedia conferencing server etc.
Project Components
SIP library: The SIP protocol is implemented as a set of JAVA interfaces. It is based on the JAIN-SIP specifications. JAIN-SIP is a consortium of companies headed by SUN to promote SIP. The specification gives an outline of the java interfaces that should be supported by any implementation.

SIP User Agent: Using the SIP library a user agent that can send and receive sip calls was implemented.
JMF: Java Media Framework. This is set of libraries provided by SUN for building multimedia applications in java. It provides RTP/RTCP interfaces to send and receive real time multimedia, interfaces for audio and video playback. Once a sip session is established, RTP libraries were used to send the real time audio and video data.
JMStudio: This is a multimedia player provided by SUN that uses JMF to playback audio/video. The user agent was integrated with the JMStudio to form a complete video conferencing tool.
Session Initiation Protocol
Session Initiation Protocol (SIP) is the Internet Engineering Task Force’s standard for multimedia conferencing over IP. SIP is an ASCII-based, application-layer control protocol that can be used to establish, maintain, and terminate calls between two or more end points. Like other VoIP protocols, SIP is designed to address the functions of signaling and session management within a packet telephony network. Signaling allows call information to be carried across network boundaries. Session management provides the ability to control the attributes of an end-to-end call. SIP can be employed in Phone calls, multiparty conferences, video-on-demand and virtual presentations. It is more simple and Scalable than H.323 suite of protocols.

SIP provides the capabilities to:

· Determine the location of the target end point—SIP supports address resolution, name mapping, and call redirection.

· Determine the media capabilities of the target end point—Via Session Description Protocol (SDP), SIP determines the “lowest level” of common services between the end points. Conferences are established using only the media capabilities that can be supported by all end points.

· Determine the availability of the target end point—If a call cannot be completed because the target end point is unavailable, SIP determines whether the called party is already on the phone or did not answer in the allotted number of rings. It then returns a message indicating why the target end point was unavailable.

· Establish a session between the originating and target end point—If the call can be completed, SIP establishes a session between the end points. SIP also supports mid-call changes, such as the addition of another end point to the conference or the changing of a media characteristic or codec.

· Handle the transfer and termination of calls—SIP supports the transfer of calls from one end point to another. During a call transfer, SIP simply establishes a session between the transferee and a new end point (specified by the transferring party) and terminates the session between the transferee and the transferring party. At the end of a call, SIP terminates the sessions between all parties.

Where SIP fits in the overall multimedia protocol architecture

[image: image5.png]

Components of SIP

SIP is a peer-to-peer protocol. The peers in a session are called User Agents (UAs). A user agent can function in one of the following roles:

· User agent client (UAC)— A client application that initiates the SIP request.

· User agent server (UAS)— A server application that contacts the user when a SIP request is received and that returns a response on behalf of the user.

Typically, a SIP end point is capable of functioning as both a UAC and a UAS, but functions only as one or the other per transaction. Whether the endpoint functions as a UAC or a UAS depends on the UA that initiated the request.

SIP Messages and Methods

All SIP messages are either requests from a server or client, or responses to a request. The messages are formatted according to RFC 822, “Standard for the format of ARPA internet text messages”. For all messages, the general format is:

· A start line

· One or more header fields

· An empty line

· A message body (optional)

Each line must end with a carriage return-line feed (CRLF).

Requests

SIP uses six types (methods) of requests:

· INVITE—Indicates a user or service is being invited to participate in a call session.

· ACK—Confirms that the client has received a final response to an INVITE request.

· BYE—Terminates a call and can be sent by either the caller or the callee.

· CANCEL—Cancels any pending searches but does not terminate a call that currently in progress.

· OPTIONS—Queries the capabilities of servers.

· REGISTER—Registers the address listed in the To header field with a SIP server. Gateways do not support the REGISTER method.

Responses

In response to requests, SIP uses the following categories of responses:

· 1xx Informational Messages

· 2xx Successful Responses

· 3xx Redirection Responses

· 4xx Request Failure Responses

· 5xx Server Failure Responses

· 6xx General Failure Responses
Software Architecture

JAIN SIP
It provides specifications that has to be followed in the SIP implementation.
· JAIN provides an event-layer abstraction for applications.

· JAVA-Standard interface to a SIP Signaling Stack.

· Wraps the low-level stack and protocol abstractions in a JAVA interface layer

· Allows a JAVA application/servlet or bean to imbed a SIP stack and access low level functions
· Simplifies the construction of SIP components: User Agents, Proxy Servers and Presence Servers.

· JAIN SIP can be utilized in a User Agent or Proxy
· JAIN-SIP achieves application portability between JAIN-SIP compliant stacks by
· Standardize the interface to the stack.

· Standardize the events and event semantics.

· Standardize transactional semantics.

[image: image1.png]reTpem—

eda e
{H251, bPEG)

ATP

(=8

(

Va4

)

I St e st |

[image: image3.png]0]

addSip
Listener()

@

Receives
Sip
Events

SIP Applications

· Application MUST go through the provider for all interactions with the stack (no direct access to the wire protocols).

· Application registers an implementation of the SipListener interface with the stack.
· Application sees all signaling traffic and is responsible for sending responses via the SipProvider.

SIP Stack
· Provide methods to format and send SIP messages

· Parse incoming sip messages and allow application to access / modify fields through a standardized JAVA interfaces

· Invoke appropriate application handlers when protocol significant events occur

· Provide transaction support

· [image: image4.png]T
o

Manage transactions on behalf of a user application
JAIN-SIP Software Packages
· jain.protocol.ip.sip

· Stack, provider and other packages.

· jain.protocol.ip.sip.header:

· Header factories, interfaces for each supported header.

· jain.protocol.ip.sip.message

· Message factories : Create messages for sending out.

· jain.protocol.ip.sip.address

· Address factories: Parse and create URL and address objects.
· jain.protocol.ip.sip.SipFactory:

· Creates the main Stack object.

· jain.protocol.ip.sip.SipStack

· Event generator: Fields incoming messages and generates events.

· Transaction handler: Manages transactions and generates transaction timeout events. Transaction objects are not directly accessible by the application.

· jain.protocol.ip.sip.ListeningPoint:

· Corresponds to a Stack Address (UDP/TCP) – IP address and port from which the stack can receive and send messages.

· The stack is configured with one or more listening points.

· jain.protocol.ip.sip.Provider

· Provides helper facilities for the application program (sendRequest, sendResponse, sendAck…)

The SipListener Interface

SIP Application programs must implement the jain.protocol.ip.sip.SipListener interface

public interface SipListener extends java.util.EventListener

{
public void processResponse(SipEvent responseReceivedEvent);

public void processRequest(SipEvent requestReceivedEvent);

public void processTimeOut(SipEvent transactionTimeoutEvent);

}
SIP User Agent
Pseudo Code for the SIP User Agent
· Create a SipFactory object instance

sipFactory = SipFactory.getInstance();

sipFactory.setPathName("gov.nist");
· Create a SIP Stack instance

try { sipStack = sipFactory.createSipStack();

} catch(SipPeerUnavailableException e) { System.exit(-1);}
 catch(SipException e) { System.exit(-1); }
[image: image2.png]getInstance()

adiSipListener)

create
SipProvider(create
) sip

Stack()

· Create factories to format headers and send messages

HeaderFactory headerFactory = sipFactory.createHeaderFactory();

AddressFactory addressFactory = sipFactory.createAddressFactory();

MessageFactory messageFactory = sipFactory.createMessageFactory();
· Handle incoming messages (delivered as events):

public void
 processRequest(SipEvent requestReceivedEvent) {

 Request request = (Request)requestReceivedEvent.getMessage();

 long serverTransactionId = requestReceivedEvent.getTransactionId();

 try {

if (request.getMethod().equals(Request.INVITE))

processInvite(request,serverTransactionId);

else if (request.getMethod().equals(Request.ACK))

} catch (SipParseException ex) { ex.printStackTrace(); }

 }
· Handle Timeout Events

public void processTimeOut(jain.protocol.ip.sip.SipEvent transactionTimeOutEvent) {

 try {

 if(transactionTimeOutEvent.isClientTransaction()) {

 get the request for this transaction

sipProvider.sendRequest(request);

}

} catch (Exception ex) { ex.printStackTrace(); }

 }

Project Setup

The project was tested on the Intel platform. The user agents were installed on two machines. Though sip provides multicast options, the project is tested for unicast conference.

128.10.3.151 --(128.10.3.159

Request: INVITE ram@128.10.3.159
128.10.3.151 (--- 128.10.3.159

Response: 200 OK

128.10.3.151 ---(128.10.3.159

Request: ACK

Once the Ack is send, 128.10.3.151 starts an RTP session. Similarly after receiving an ACK 128.10.3.159 starts an RTP Session to receive and send data to the other end. After this the sender uses the JMStudio front end to decide whether to send audio/video or both. Once the selection is made, the media capture and transmit process starts. When the ends decide to terminate the session one of the end’s send a BYE request.
128.10.3.151 (--- 128.10.3.159

Request: BYE

After sending/Receiving the BYE Request the ends close their RTP session. The receiving the request ends have options to reject the request. Since the experiments were done in a LAN, no delay was recognized while receiving the audio/video from the other end.
References

· Handley, M., Schulzrinne, H., Schooler, E., J. Rosenberg, “SIP: Session Initiation Protocol”, RFC 2543, March 1999.

· Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: a transport protocol for real-time applications", RFC 1889, Jan. 1996.

· Schulzrinne, H., Lanphier, R. and A. Rao, "Real time streaming protocol (RTSP)", RFC 2326, April 1998.

· Handley, M. and V. Jacobson, "SDP: session description protocol", RFC 2327, April 1998.

· http://www.cs.columbia.edu/sip, http://www.cs.columbia.edu/IRT/topics.html
These two links from Prof. Henning Schulzrinne homepage contains comprehensive information about SIP and other multimedia network protocols.

· http://www.sipcenter.com/index.html
A site sponsored by companies having SIP products. The site gives comprehensive list of SIP products and new developments from all participating companies.

· http://java.sun.com/products/java-media/jmf/2.1.1/index.html
Java Media Framework: This reference implementation, supports capture, playback, streaming and trans coding of audio, video and other time-based media.

_1095861773.bin

