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Abstract

To avoid a congestion collapse, network flows should
adjust their sending rates. Adaptive flows adjust the rate,
while unresponsive flows do not respond to congestion and
keep sending packets. Unresponsive flows waste resources
by taking their share of the upstream links of a domain
and dropping packets later when the downstream links are
congested. We use network tomography—an edge-to-edge
mechanism to infer per-link internal characteristics of a
domain—to identify unresponsive flows that cause packet
drops in other flows. We have designed an algorithm to
dynamically regulate unresponsive flows. The congestion
control algorithm is evaluated using both adaptive and un-
responsive flows, with sending rates as high as four times
of the bottleneck bandwidth, and in presence of short and
long-lived background traffic.

1 Introduction

An unresponsive flow does not control its sending rate
in response to a congestion. Adaptive flow, such as TCP,
reduces its sending rates during congestion. This behavior
of TCP prevents a congestion collapse in a network. The
unresponsive flow, such as UDP, sends at the same rate even
if there is a congestion along the path. Because it does not
use any feedback mechanism, and can not respond to the
congestion. This behavior may cause the adaptive flows to
starve, and introduces unfairness when both types of flows
coexist at the same time in the Internet.

An adaptive flow might behave as unresponsive one if
the implementation does not follow standard specifications.
For example, selfish users can change the implementation
of TCP so that it does not adjust the sending rate during a
congestion. We can detect and control such selfish flows
using the proposed scheme.
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CCR-001712, and CCR-001788, CERIAS grants, and IBM SUR grant.

The research problem we address in this paper is to de-
sign a scalable congestion control scheme that involves only
the edge routers. Involving core routers makes a scheme
difficult to deploy. Congestion collapses can be mitigated
using improved packet scheduling or an active queue man-
agement [2, 6]. However, the problem is associated with dy-
namic conditions such as network load, capacity, and the re-
action of different transport protocols to congestion. There-
fore, a dynamic control mechanism can solve this problem.

We use the network tomography, an edge-to-edge mech-
anism to infer per-link characteristics of a network domain,
to detect congestion in a network domain. The tomography-
based unresponsive flow detection scheme samples incom-
ing flows at the ingress routers, and probes the network with
sampled data. The edge-to-edge probing detects excessive
packet loss inside of a network domain and the cause be-
hind the loss. To alleviate the congestion, the unresponsive
flows are regulated at the edge routers.

We design detection and adaptive control mechanism in
this paper. During congestion, the control algorithm regu-
lates the suspected flows such a way that the loss ratio of
the congested links drops exponentially with time. In ab-
sence of the congestion, the flow rates are increased to the
maximum value subscribed by the user. To achieve scala-
bility, the detection and control processing is done without
involvement of core routers. The scheme has been eval-
uated and the performance has been tested using the ns-2
simulator.

The organization of this paper is as follows: Section 2
discusses the related work on congestion collapse from un-
delivered packets and mechanisms to address the problem.
The loss inference using network tomography, detecting un-
responsive flows, and congestion control algorithm is dis-
cussed in Section 3. The setup for the experiments, the sim-
ulation results, and overhead of the proposed scheme are
provided in Section 4. Section 5 concludes the paper.
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2 Related Work

Floyd et al. [5] study congestion collapse from unde-
livered packets. This situation arises when bandwidth is
continuously consumed by packets at the upstream that are
dropped at the downstream. Several ways to detect unre-
sponsive flows are presented. It is suggested that routers
can monitor flows to detect whether flow is responsive to
congestion or not. If a flow is not responsive to congestion,
it can be penalized by discarding packets to a higher rate at
the router. According to the authors there are some limita-
tions of these tests to identify non-“TCP-friendly flow”. It
does not help to save bandwidth at the upstream if the flow
sees the congestion at the downstream because this solution
does not propagate the congestion information from down-
stream to upstream.

Seddigh et al. [10] suggest that if TCP and UDP are put
into separate queues or Assured Forwarding classes, they
may coexist fairly. This discrimination between TCP and
UDP traffic may punish some well-behaved UDP flows.
The core router does not know the profile of a flow and
can not decide to allocate bandwidth to them fairly. The
problem is associated with network load, capacity, and the
reaction of different transport protocols to congestion. A
dynamic control mechanism can solve this problem.

Albuquerque et al. [1] propose congestion avoidance
mechanism named Network Border Patrol. To detect con-
gestion, it measures entering rate of traffic to a domain and
the leaving rate from the domain. It detects and restricts un-
responsive traffic flows and eliminates congestion collapse.
The border routers monitor all flows, measure rates, and ex-
change this information with all edge routers periodically
and this can be expensive. Moreover, TCP is responsive so
we do not need control mechanism for TCP at the edges.

Chow et al. [3] propose a framework where edge routers
periodically obtain information from the core by probing
and adjust the conditioner using the traffic dynamics. In this
scheme, core needs to maintain all the state information. A
simpler scheme can be employed where core sends packets
to edge routers only at the time of congestion.

Wu et al. propose Direct Congestion Control Scheme
(DCCS)in [11]. In this scheme, they detect congestion by
observing packet drops with lowest priority to drop at the
core router. We follow the same rule in our research to de-
tect congestion. Our core is simpler in the sense that it de-
tects drops of only unresponsive flows. The main difference
between our work and [11] is that we design the shaper at
the edge that controls the unresponsive flow. We explored
the similar idea, and designed an adaptive shaper at the edge
that controls the unresponsive flow in [7].

Mahajan et al. [8] use Aggregate-based Congestion Con-
trol (ACC) to detect and control high bandwidth aggregate
flows. They use the history of packet drops over a time in-

terval and then the ACC agent matches prefix of IP destina-
tion addresses to detect flows going to the same destination
address for Denial of Service(DoS) attacks. The ACC agent
controls the flows using a rate-limiter and pushes status
messages reporting the arrival rate to the upstream routers.
Our goal is to detect and control unresponsive flows, how-
ever, it can protect DoS attack by using their idea of prefix
matching [8].

All of the above schemes involve core routers to de-
tect congestion collapse due to unresponsive flows. Our
tomography-based congestion control scheme does not in-
volve core routers and, thus, achieves scalability. In next
section, we discuss inference of packet loss using network
tomography.
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Figure 1. Binary tree to infer loss from source
0 to receivers R1 and R2.

3 Tomography-based Congestion Control
(TCC)

3.1 Network Tomography and Loss Inference

Network tomography uses correlations among end-to-
end measurements to infer per-link characteristics. For ex-
ample, Duffield et al. [4] use unicast packet “stripes” (back-
to-back probe packets) to infer a link loss by computing the
correlation of a packet loss within a stripe at different desti-
nations. This scheme sends a series of probe packets, called
a stripe, with no delay among the transmissions of succes-
sive (usually three) packets. For a two-leaf binary tree (Fig-
ure 1) spanned by the nodes 0, k, R1, R2, stripes are sent
from the root 0 to the leaves to estimate the characteristics
of one link, say k−R1 [4]. If a packet reaches the receiver,
we can infer that the packet reached the branch point k. A
complementary stripe is similarly sent to estimate the char-
acteristics of the other link, k−R2. The packet transmission
probability from the root to node k is calculated as:

Ak =
ZR1

ZR2

ZR1∪R2

, (1)
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where ZR1
represents the empirical mean of a binary vari-

able, which takes the value of 1 when all packets sent to R1

reach their destination and 0 otherwise. The mean is taken
over n identical stripes. By combining estimates of stripes
down each such tree, the characteristics of the common path
from 0 − k are estimated. The loss ratio of a link is calcu-
lated by subtracting transmission probability from one.

This inference technique extends to general trees. Con-
sider an arbitrary tree where for each node k, R(k) denotes
the subset of leaves descended from k. Let Q(k) denotes
the set of ordered pairs of nodes in R(k) descended from k.
For each (R1, R2) ∈ Q(k), a stripe should be sent from the
root to the receivers R1 and R2.

3.2 Congestion Detection

Congestion detection depends on delay and loss mea-
surements. Delay is the end-to-end latency; packet loss ratio
is defined as the ratio of number of dropped packets from a
flow to the total number of packets of the same flow entered
the domain. We first describe delay measurements and loss
measurements before discussing the detection algorithm.

3.2.1 Delay Measurements

The unresponsive flows are sampled (using transport layer
protocol information) at all ingress routers. The header of a
sampled packet is used to probe the path of an unresponsive
flow. The probe and user traffic follow the same path with
a high probability, because the route does not get changed
often inside a network domain. This measurement is a close
approximation of the delay value that is experienced by the
sampled flows in the network domain.

For delay probing, the ingress routers encode the current
timestamp tingress into the payload, and mark the protocol
field of the IP header with a new value. An egress router rec-
ognizes such packets, and removes them from the network.
Additionally, the egress router computes the edge-to-edge
link delay for a packet from the difference between its own
time and tingress. We ignore minor drifts of the clocks since
all routers are in one administrative domain, and can be syn-
chronized fairly accurately. The egress classifies the probe
packet as belonging to flow i, and update the average packet
delay, avg delayi, for delay sample delayi(t) at time t us-
ing an exponential weighted moving average (EWMA):

avg delayi(t) = α×avg delayi(t−1)+(1−α)×delayi(t),
(2)

where α is a small fraction 0 ≤ α ≤ 1 to emphasize
recent history rather than the current sample alone.

If the average packet delay of path k exceeds the delay
guarantee of the path for flow i, it is an indication of conges-
tion. If the network is properly provisioned and flows do not

misbehave, there should not be any delay greater than the
estimated path delay for any flow i. A flow may experience
high delay due to some other flows that cause congestion in
the network.

3.2.2 Loss Measurements

If the edge-to-edge link delay is higher than a predefined
threshold, we use the loss inference mechanism described
in previous subsection (using equation 1) to measure loss
in links that experience high delay. The objective of loss
measurements is to obtain loss ratio of each individual links.
The links with high losses are identified, and the loss value
is used to control the congestion.

The delay probing identifies the paths that need to be
considered for loss measurements. Each loss probing needs
one sender and two receiver nodes. The incidence of high
delay and the edge-to-edge paths that have high delay are re-
ported to a congestion controller that sits at any edge router.
The controller collects a set of paths P for the loss probing.
The set P and the topology are used to determine the root
of the probing tree for stripe-based probing. Probes are sent
from the root to all ordered pair of edge routers. The root
is selected such a way that it can cover maximum number
of links in the set P . If some links in the path set P are
not covered, we need to repeat the loss measurements from
another edge router considering as a root of the tree.

3.2.3 Detection

The links with high losses and egress routers through which
flows are exiting the domain are identified. At these egress
routers, all flows that are consuming high bandwidth are
isolated. These rates are sent to the ingress routers through
which the flows enter into the domain. The ingress router
compares the rate at which the suspected flows are entering
and leaving the network domain. This identifies the flows
that are not cooperating with the network to control their
rates in response to congestion.

The rate of unresponsive flows can be reported per flow
basis or in aggregate. If the number of flows to be reported
exceeds a threshold, the feedback is done on an aggregate
basis for each ingress router. This aggregation is done based
on the traffic class. For each traffic class the unrespon-
sive flows with high bandwidths are reported to the ingress
routers. The identity of the ingress routers are obtained
from the delay probes, where an identification code is used
to relate a flow and its entry point. Otherwise, the egress
does not know through which ingress routers the flows are
entering into the domain. The detection algorithm runs as
follows:

1. Each ingress router samples the user traffic for delay
probing. The egress routers report the incidence of
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high delay and the edge-to-edge path that has high de-
lay to a congestion controller.

2. The controller generates a probing tree using the set of
path P that has high delay. The root of the tree is the
sender of the loss probing. These probes are sent to
every order pair of the edge routers of the domain. The
loss probing obtains the loss ratio of each individual
link of the path in P .

3. Using the links with high loss ratio and the topology
tree, a set of egress routers E are obtained through
which the unresponsive flows are leaving the domain.
These flows need to be controlled because they are
causing congestion in the domain.

4. Flows are analyzed at each egress router of the set E .
The flows that are having high bandwidth are reported
to the ingress routers through which flows are entering
into the domain.

3.3 Congestion Control

To control the unresponsive flows, the inferred loss ra-
tio is used. As it is discussed in detection mechanism,
the loss ratio is sent to the ingress routers to control the
flows. For each flow that has high packet loss inside a
domain, the router reduces the rate proportionally to the
packet drop rate inside the network. Suppose that a flow
has an original profile (target rate) of targetrate. In case
of the packet drop ratio lossratio, the profile of the flow
is updated temporarily (to yield the rate newprofile) using
newprofile = targetrate × lossratio.

The congestion control algorithm adjusts the rate of the
flows (that are causing drops to other flows) such a way
that the loss ratio inside a network domain converges to
a low predefined threshold LLOSSTHR. If the loss ratio
decreases with time due to the current control setup, the
control parameters are not changed until the loss ratio con-
verges to a value. If the converged loss value is higher than
the LLOSSTHR, the rate is controlled based on the loss ra-
tio. If the loss ratio stays below LLOSSTHR for a while,
the control algorithm allows more traffic to enter into the
domain. The rate is increased linearly until it crosses the
LLOSSTHR. In this way, the loss oscillates towards the
LLOSSTHR parameter.

The control algorithm runs as follows:

1. If the loss ratio jumps to a high value, the control al-
gorithm decreases the incoming rate of the unrespon-
sive flows. This control decreases the loss ratio expo-
nentially with time. If the loss decreases with time,
the control algorithm does not change the rate control
(RC) parameter. We refer to this decreasing loss ratio
direction as DOWNWARD direction.

2. When the loss ratio converges to a value higher than
the LLOSSTHR, the algorithm decreases the rate again
based on current loss ratio. If the converged loss ratio
is below the LLOSSTHR for a specified time, the al-
gorithm allows more traffic to enter into the domain.

3. If the loss ratio curve goes UPWARD (opposite of
DOWNWARD) direction, the rate control is increased
with the current loss ratio.

Therefore, the rate control algorithm conducts Additive
Increase and Multiplicative Decrease (AIMD). In presence
of loss, the rate is control aggressively, and in absence of
loss the rate is increased linearly. Thus, the rate adjustment
algorithm is similar to TCP congestion control algorithm.
At the edge router, shaping is done based on the RC param-
eter. The value of the RC parameter varies from 0 → 1. To
shape a flow, a random number is generated. If the random
number is less than RC, a packet from this flow is dropped.
Otherwise, the packet is admitted into the domain.

4 Experimental Study

4.1 Setup

Using the ns-2 [9] simulator, we evaluate the perfor-
mance of our unresponsive flow control scheme. To test our
framework, we have used a topology shown in Figure 2.
The same topology is used in [4] to infer loss. We generate
several TCP and UDP type aggregate flows in the network.
Each aggregate flow contains 10 to 100 micro flows. Cross
traffic is used to vary the background traffic by setting the
start and the finish times of these flows differently, in or-
der to change the overall traffic situation over the paths of
all flows. The sending rate and the round trip time (RTT) of
different flows are changed over time to show the robustness
of the control mechanism for a variety of flows.

We conduct a series of experiments to show congestion
collapse in the absence of flow control mechanism, the ef-
fectiveness of the tomography-based inference of network
parameters, and the unresponsive flow detection and con-
trol in a variety of scenarios.

4.2 Congestion Detection

The congestion is detected using edge-to-edge link delay
and link loss ratio. If some links are congested, the edge-
to-edge delay through these links become very high. This
high delay is used as an indication of congestion. Figure 3
shows delay of the path E1 → E6. The latency of this path
is 100 ms when the links are idle. However, the delay goes
as high as one second due to the congestion. The figure also
shows that with proper congestion control the delay can be
reduced to a desired level.
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Figure 2. Simulation topology. Each edge
router is connected with multiple domains.
C4 → E6 is the bottleneck link in the setup.
Unresponsive flows take their share from the
shared link C3 → C4, and their packets are
dropped in the bottleneck link.
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Figure 3. Delay pattern changes with exces-
sive traffic. This high delay is an indication
that the edge-to-edge path is congested. The
flow control mechanism alleviates the con-
gestion, and reduces the delay.

The congested links are identified using stripe based uni-
cast probing. The probes are sent to obtain loss ratio of the
links that lie on the high delay path. In our experiment,
we send probes from E1 to all other edge routers to obtain
the loss of the links on the path E1 → E6. The inferred
loss for the link C4 → E6 is shown in Figure 4. It shows
loss inference for the topology described above for 3-packet

stripes. First experiment has fewer number of flows to cause
packet drops inside the network domain. Second and third
experiments have enough flows to cause huge packets drops
in the network. The figure shows loss inference is close to
the actual loss in most of the cases. In few cases, it over-
estimates or under-estimates the loss. We can reduce this
effect by increasing the time interval to measure probe loss.
4-packet stripe has little advantage on 3-packet stripe in our
experiment.
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Figure 4. Inferring loss using unicast stripe-
based probing. The actual loss is close to the
inferred loss.

Upon detection of the congested links, we identify the
unresponsive flows at the egress routers, and pass this infor-
mation to the appropriate ingress routers to control them.
The inference mechanisms converge to real measurements
value in 15-20 second. The detection mechanism is effec-
tive if the congestion continues for a while. If the conges-
tion lasts only a few seconds, we do not need to control that.

4.3 Congestion Control

The unresponsive flows are controlled using a shaper.
The shaping algorithm drops packets based on the service
level agreement (SLA) parameters of the flow, the drop rate,
and the sending rate of the flow. First, we show that in
absence of congestion control there might be a congestion
collapse in a network domain. Second, we show the perfor-
mance of an adaptive congestion control algorithm. Third,
the robustness of the algorithm is shown with varying num-
ber of micro flows, where a micro flow is defined with five
tuples (source addr, source port, dest addr, dest port, and
protocol).

Congestion Collapse. Congestion collapse due to unde-
livered packets wastes resources in a network. In our ex-
periments, TCP and UDP flows share the link C3 → C4.
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Then, the UDP flows experience congestion at the link
C4 → E6, which causes huge amount of packet drops. As,
these UDP flows take the equal share with TCP flows of
the link C3 → C4, the resources are wasted in the next
link. If we know the packets will be dropped any way
at the link C4 → E6, it is better to drop them earlier at
the ingress router so that the TCP flows can get the wasted
share of the link C3 → C4, which increases the application
level quality of the TCP flows. Figure 5 shows that without
any flow control, the TCP flows obtain less than 1.5 Mbps,
whereas, with flow control mechanism the bandwidth gain
goes higher than 3 Mbps. The congestion window of a sam-
pled TCP flow is shown with or without flow control in Fig-
ure 6. Flow control helps to increase the congestion window
of the TCP flows.
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Figure 5. Congestion collapse if there is no
flow control. TCP gets the wasted bandwidth
by the UDP flows when flow control mecha-
nism is used.

Adaptive Control. The adaptive control algorithm
throttles the rate of unresponsive flows during congestion so
that the loss ratio converges to a low and predefined value.
The algorithm needs to infer loss periodically. An interval
of 30 second is used to infer loss, and high loss is informed
to the appropriate flow controller.. We run the experiment
for 1200 second to evaluate the performance of the adap-
tive congestion control. Figure 7 shows that this mechanism
helps the TCP flows to obtain 2.5 - 3 Mbps bandwidth. The
UDP flows face more aggressive drops for a while, because
the algorithm tries to determine the control rate at which the
unresponsive flows should be shaped.

Figure 8 shows the loss pattern during this congestion
control. Initially, the loss drops exponentially. When the
loss ratio hits the lowest acceptable level at 600 second, the
control mechanism allows more traffic into the domain. In
this way, the rate control parameter is adjusted, and the loss
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Figure 6. Congestion window of a TCP flow
with or without flow control. The congestion
window is reset to one several times if there
is no flow control.

ratio oscillates towards the LLOSSTHR value, which is 0.1
in our experiments.
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Figure 7. Bandwidth gain by TCP and UDP
flow with adaptive flow control.

Robustness. To show the robustness of the control al-
gorithm, we vary the number of micro flows per aggregate
flows from 10 to 100. We sample the bandwidth of TCP and
UDP flows from 50 second to 60 second, and take the av-
erage to plot in Figure 9. This figure shows that increasing
number of flows does not hurt the performance of the con-
gestion control algorithm. Experiments are conducted with
different network dynamics that change the congestion dy-
namically to test the robustness of the control algorithm.
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Figure 8. Loss ratio with adaptive flow con-
trol. Initially the loss decays exponentially,
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4.4 Overhead

The overhead of our scheme is low. If all links are OC3
type, on average each link experiences probe traffic less
than 0.015% of the link capacity in the network domain
shown in Figure 2. Our mechanism in non-intrusive, i.e.,
the injected traffic does not change the characteristics of the
network domain.

5 Conclusion

We proposed and evaluated a new and scalable way to
detect and regulate unresponsive flows to prevent conges-

tion collapses due to undelivered packets. Our scheme does
not require any help from the core routers and introduces
a very low overhead. The changes require at the edges
(ingress and egress) are minor. The implementation is sim-
ple and the deployment should be easy.
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