
Verifying Data Integrity in Peer-to-Peer Media Streaming

Ahsan Habib ∗ Dongyan Xu, Mikhail Atallah, Bharat Bhargava † John Chuang ‡

Abstract

We study the verification of data integrity during peer-
to-peer media streaming sessions. Challenges include
the timing constraint of streaming as well as the un-
trustworthiness of peers. We show the inadequacy of
existing authentication protocols, and propose, Block-
Oriented Probabilistic Verification (BOPV), an efficient
protocol that utilizes message digest and probabilistic
verification. We then propose One Time Digest Pro-
tocol (OTDP) and Tree-based Forward Digest Protocol
(TFDP) to further reduce the communication overhead.
A comprehensive comparison is presented comparing
the performance of existing protocols and our protocols,
with respect to overhead, security assurance level, and
packet loss tolerance. Finally, simulation and wide-area
experiments are conducted to evaluate the performance
of our protocols.

1 Introduction

Consider the following media distribution system: a cen-
tral server (say, Hollywood) first starts the streaming
distribution of some media files. When there are suffi-
cient clients (or ‘peers’) in the system that have received
the media data, they will begin distributing the media to

∗School of Information and Management Systems, University of
California, Berkeley. Part of the work is done when the author was at
Purdue. Ahsan Habib is supported in part by NSF-ITR 0085879 and
NSF-ANI 0219110. Email: habib@sims.berkeley.edu

†Center for Education and Research in Information Assurance and
Security (CERIAS) and Department of Computer Sciences, Purdue
University, West Lafayette, Indiana. Dongyan Xu is supported in part
by NSF-IIS 0209059, Mikhail Atallah is supported in part by NSF-
EIA 9903545, NSF-ISS 0219560, and CERIAS, and Bharat Bhar-
gava is supported in part by NSF-ANI 0219110 and CERIAS. Email:
dxu,mja,bb@cs.purdue.edu

‡School of Information and Management Systems, University of
California, Berkeley. John Chuang is supported in part by NSF-ITR
0085879. Email: chuang@sims.berkeley.edu

other peers. However, the distribution is supervised by
Hollywood: it authenticates requesting peers and gives
them credentials to obtain media streaming from other
peers. Meanwhile, the supplying peers will perform me-
dia streaming only if proper credentials are presented.
Due to limited bandwidth of peers, a peer-to-peer (P2P)
streaming session may involve more than one supplying
peer.

In such a system, data integrity verification poses
challenges. First, unlike authentication for Multicast [3,
15, 13], the suppliers in this environment are not as-
sumed to be trusted. During multicast, packets come
from a trusted server. In a P2P system, packets signed
by any arbitrary supplier may not be acceptable to other
peers. Thus, the requesting peer needs a point of ref-
erence to verify the data it receives from the suppliers.
Second, the objective of checking data integrity is not
only to verify that the data are not corrupted, but also to
validate that the data are really what one has requested.
For example, if a peer requests the movie Matrix, data
integrity verification should ensure that the peer is get-
ting uncorrupted data of Matrix, not those of Star Wars.
Third, due to the timing constraint of streaming, the in-
tegrity check has to be performed without causing sig-
nificant delay. The system has several other issues such
as how to ensure that the clients will not distribute their
contents to their friends. These issues are out of scope
of this paper. We focus on the data integrity verification
in this paper.

Unfortunately, existing protocols for data integrity
verification are either expensive or inapplicable for P2P
streaming. A comprehensive analysis and comparison
will be presented in Section 4. In this paper, we adopt
the method of message digest, and propose three proto-
cols that involve different trade-off strategies between
degree of assurance, computation and communication
overhead. We first propose a Block-Oriented Proba-

1

bilistic Verification (BOPV) protocol to verify data in-
tegrity efficiently. We show that probabilistic verifica-
tion provides high assurance of data integrity and in-
curs low computation overhead. Then, we propose One
Time Digest Protocol (OTDP) and Tree-based Forward
Digest Protocol (TFDP) to further reduce the communi-
cation overhead. Our protocols work well with unreli-
able transport protocols. This is achieved by using mul-
tiple hashes or Forward Error Correction (FEC) codes
(applied only to digests, not data). By both analysis and
simulation (using the 1.3 GB Matrix movie), we show
that our protocols outperform existing protocols.

We note that if the authentication process is not re-
quired, we achieve data verification without involving
the Hollywood server in each session. However, a
trusted party is required to provide a point of reference
for each media file. The reference information will be
posted on a set of distributed sites. This process is sim-
ilar as posting the rendezvous point for an application
layer multicast system, or obtaining information about
a close by peer in a peer-to-peer system such as PAS-
TRY [20]. When a peer wants to watch a movie, it down-
loads the trusted reference information and then pro-
ceeds with the proposed protocols. In this scenario, we
like to promote the TFDP protocol because it requires to
post only one signed hash as a point of reference. We
also note that the proposed protocols are not limited for
media streaming sessions. We impose the timing con-
straint to make it applicable for multimedia streaming.
If this restriction is relaxed, the solutions still work. For
example, data sharing in a P2P environment can use the
proposed protocols.

The rest of the paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 provides our
protocols and discusses protocol parameter configura-
tion in order to obtain desired level of security. Anal-
ysis and comparisons among different authentication
schemes are presented in Section 4. Section 5 provides
results from simulation and experiments from wide area
setup of our prototype implementation. Finally, Sec-
tion 6 concludes this paper.

2 Related Work

One common way to verify data integrity is to let the
server sign every packet or hash of each packet with its
private key using RSA digital signature [18]. A peer
caches the packets as well as the signatures, when it
watches a media file. The signatures along with the data
will be provided to other peers upon request. The receiv-
ing peer can verify the digests using the server’s public
key. The main drawback is that the RSA signature verifi-
cation incurs high computation overhead at the receiving
peers.

Gennaro and Rohatgi [6] introduced techniques to
sign off-line and online digital streams. This method
is elegant, however, it does not tolerate packet loss and
it has high communication overhead. Although one-
time and fast signature schemes such as [11, 14, 17]
can reduce computation and/or communication over-
head, these signatures are only secure for a short period
of time. Rohatgi [19] proposed k-time signature scheme
which is more efficient than one-time signature scheme.
Still, the scheme requires 300 bytes for each signature.

Wong and Lam [21] studied data authenticity and
integrity for lossy multicast flows. They proposed
Merkle’s signature tree to sign multicast stream. In this
scheme, the root is signed to amortize one signature
over multiple messages. Each packet contains the di-
gests of all nodes necessary to compute the digest of
the root and the signature of the root. As a result, the
space requirement is high: 200 bytes in each packet us-
ing 1024-bit RSA for a tree of 16 packets. Our TFDP
also uses Merkle’s tree. However, we significantly re-
duce the overhead by sending the digests of one subtree
before sending any data.

Perrig et al. [15, 16] proposed TESLA and EMSS for
efficient and secure multicast. TESLA embeds the sig-
nature of packet pi and the key to verify packet pi−1 in
packet pi. The key of packet pi is sent in packet pi+1.
The adversary will see the key but it is too late to forge
the signature. TESLA requires strict ordering of packets,
which makes it inappropriate for P2P streaming where
packets are transmitted from multiple supplying peers.
Furthermore, if supplying peers generate keys and sign
the digests like TESLA, it might not be acceptable to
other receiving peers in a P2P streaming because the

2

peers are not assumed to be trustworthy. The efficient
multi-chained stream signature (EMSS) tolerates packet
loss by sending multiple hashes with each packet. We
explore this option to make our protocols robust against
packet losses during streaming.

Park et al. [13] proposed SAIDA which leverages era-
sure codes to amortize a single signature operation over
multiple packets. In SAIDA, a block of a packets car-
ries the encoded digests and signature of the block. The
signature and digests are recoverable, if the receiver gets
any b packets. This digest encoding is robust against
bursty packet losses to a certain level. To reduce over-
head, FEC is used to encode only digests, not data. We
show that our protocols incur much lower overhead than
SAIDA, yet it achieves satisfactory loss resilience.

Horne et al. [9] proposed an escrow service infras-
tructure to verify data in P2P file sharing environment.
An escrow server is responsible for file verification and
for payment to peers that offer file sharing. However, it
is not appropriate for media streaming due to the unac-
ceptable latency and overhead of verifying every single
segment via the escrow server. Castro et al. [5] ad-
dress different security issues in P2P network routing.
They show that self-certifying data can help secure P2P
routing. However, they do not address P2P transmission
of time-sensitive data. To the best of our knowledge,
there has been no prior study specifically targeting data
integrity verification for P2P media streaming.

3 Proposed Solution

To design the protocols, we use message digest instead
of digital signature, because the latter has high compu-
tation overhead and generates long signatures. All our
protocols require that a requesting peer collects certain
references from a trusted authority for data integrity ver-
ification. The following models are considered to design
the protocols.

Streaming Model. Let Peer P0 requests a media
file and receives the stream from a set of peers P =

{P1, P2, . . . , Pm}, where m is the total number of peers
that participate in the whole streaming session. We as-
sume a media file is divided into a set of M segments as
S = {s1, s2, . . . , sM}. Each segment consists of l pack-
ets. We express segment si = {pi1, pi2, . . . , pil}, where

pij is the j-th packet of segment i. We use block and
segment interchangeably. A series of contiguous pack-
ets is referred to as a segment or block, and a series of
segments is referred to as a group. Figure 1 shows this
relationship.

Group
1

Group Group Group Group

Segment

Packet PacketPacket Packet1

or Block
Segment Segment

Media File

2 3 4

2

M/N

2
or Block or Block or Block

Segment3 N
N

3 l

1
1 2 3

Figure 1: A media file is divided into Ml packets, l con-
tiguous packets are labeled as a segment or block, N

contiguous segments are called a group. Thus, the me-
dia file has total M segments and M/N groups.

An entire segment can come from one peer or a set
of peers can contribute to stream one segment. Multi-
ple peers participate to provide part of each segment to
ensure that the receiver obtains the data at the estimated
streaming rate. We define an active set of peers P

act who
participate simultaneously at any time of the streaming
session. The streaming protocol is responsible for the
data assignment to the set P

act. For details about the
data rate assignment to each peer, readers are referred
to [8]. The active set can be changed due to change in
network dynamics. The receiver peer might not need to
download the digests that are used for verification if it
already has the digests from previous set of peers.

Incentive Model. An incentive mechanism is re-
quired in this system to motivate the peers to become
suppliers. Otherwise, most of the peers will not cooper-
ate as it is reported in [2]. The incentive model describes
the utility a supplier can obtain for becoming a supplier.
The peer calculates its cost for storing data and stream-
ing. If the cost is less than the benefit it receives, a peer
decides to cooperate. The details of the incentive model
is out of scope of this paper. However, it plays an impor-
tant role to act a supplier as an adversary, where the peer
claims it has the data, however, it sends garbage data and
tries to receive the benefit.

Adversary Model. In this model, any sender/supplier

3

of the media file puts garbage data in any segment at
any time during transmission. If a supplying peer can
successfully send garbage data without getting caught
by the receiving peer, the supplying peer can pretend to
have any media file, which foils our objective that a re-
ceiver should have the ability to verify the integrity of
downloaded data. An adversary can intentionally drop
some of its own packets or others packets to pretend that
the network is congested.

3.1 Block-Oriented Probabilistic Verifica-
tion (BOPV) Protocol

The Block-Oriented Probabilistic Verification (BOPV)
Protocol uses the merit of taking hash of a block of pack-
ets instead of hashing one packet at a time to reduce
communication overhead. The probabilistic verification
further reduces the computation overhead by verifying
selective segments instead of all segments. The proba-
bilistic verification still provides high security. First, we
discuss about the protocol, and then we analyze the pros
and cons of it. The BOPV protocol, shown in Figure 2,
runs as follows:

4.
Data

 an
d d

ige
sts

5. Verify Digests

3.
Key

s

4.
3.

2. K
eys and D

igest

4.

3.

1. A
uthentication

j
P

iP

0

�������������������������

�������������������������

�����
�����
�����

�����
�����
�����

Hollywood

P

Figure 2: Steps of the BOPV protocol to receive data
and verify digests by peer P0.

• Step 1: Peer P0 authenticates itself to the central
Hollywood server. This is done using standard au-
thentication process.

• Step 2: The server provides P0 a secret key Ki ∈

K for each segment i and a message digest of the

segment computed as:

Di = h(Ki, Hi1, Hi2, . . . , Hil,Ki), (1)

where Hij is the hash of packet j of segment i and h

is a hash function. Keyed hash [10] can be used in-
stead of Equation 1. However, we use this equation
to show a simple example how this can be done.

The server groups the segments and provides P0

only n digests out of the N segments in each group.
These digests are used as a reference to verify the
data downloaded from other peers. The commu-
nication is done securely. Step 1 and Step 2 can
be done using public certificate or using Public and
Private keys of P0 and the server. These keys are
different from the set of keys K.

• Step 3: P0 gives each supplying peer one or more
keys depending on how many segments the peers
will provide. The main purpose of using these keys
is to ensure that only a set of peers who are given
keys can participate in the streaming process. An
arbitrary adversary can not fool P0 easily because
it has to obtain the keys first. Without the keys the
digests are not acceptable.

To make the key distribution simple, one key is as-
signed for each segment. However, an improve-
ment can be done by assigning one key for each
peer. In that case, the caching strategy might en-
force each peer to store a specified number of seg-
ments to ease the key management.

• Step 4: Each supplying peer uses the keys to gener-
ate digests and sends them to P0 with the segments.
The reason why the senders supply digests is two-
fold. First, P0 can verify that the digest are coming
from a peer that knows the keys. Second and the
most important reason is that these digests are re-
quired in the verification process when some of the
packets are lost.

• Step 5: For verification, P0 computes the hash
function (Equation (1)) itself and matches the re-
sults against the digests it receives from the server.
If there is a match, all packets in the segment are
verified.

4

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

Number of segments tested (n)

P
ro

ba
bi

lit
y(

ch
ea

t)

r=2
r=3
r=4

(a)

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Number of groups

P
ro

ba
bi

lit
y(

ch
ea

t)

r=1
r=2

(b)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Percentage of segments are corrupted (r/N)

P
ro

ba
bi

lit
y(

ch
ea

t)

N=8, n=4
N=12, n=6
N=16, n=8

(c)

Figure 3: Successful probability of cheating (without getting caught) in different number of segments. N is the size of
a group, n is the number of segments are verified out of N in probabilistic verification, and r is the number of segments
an adversary wants to cheat in a group. (a) Increasing number of segments to verify (n) reduces successful cheating
probability. (b) X-axis is the number of groups an adversary tries to cheat r segments. The cheating probability drops
exponentially in multiple groups. (c) Successful cheating probability is very low when 30% or more segments are
corrupted.

P0 can generate those keys by itself instead of getting
it from the server. However, it requires P0 to compute
two hashes to verify each segment.

An example: If the server divides the movie Matrix
of size 1.3 GB into segments of size 1 KB (to tolerate
loss), this generates 26 MB digest assuming each hash is
160 bits long. P0 may not want to download this amount
of data before starting the streaming. However, if each
segment contains 32 packets, Equation (1) reduces the
volume of digests by 32 times to 0.835 MB. To fur-
ther reduce the overhead, the server forms groups, with
each group containing N segments. For each group, the
server randomly selects n segments out of the N seg-
ments to generate digests, and gives them to P0. Each
supplying peer does not know which segments will be
tested by P0, and they send digests of all segments. P0

verifies the segments it gets digests from the server. Ver-
ifying 8 out of 16 segments will reduce the communi-
cation cost by 200%. Thus, the 26 MB communication
overhead is finally reduced to 427 KB. If we further in-
crease the segment size to 128, we can lower the over-
head to 106 KB.

Probabilistic verification. It provides adjustable
level of security and reduces computation overhead.
In general, if a supplier peer wants to tamper with
r segments out of (N − n) segments, the probabil-

ity of successful cheating is Pr(cheat) =
(N−r

n)
(N

n)
=

(N−r)!×(N−n)!
(N−n−r)!×N ! .

Figure 3 shows how the probability to cheat varies
with number of segments verified by P0 with the per-
centage of corrupted segments a malicious peer may try
to send. Let N=16 and n=8. If a peer tampers with one
segment, the chance of being detected this is only 50%.
However, if a peer tampers with 4 segments, then more
than 96% of the time P0 will detect that. In other words,
P0 will get 12 good segments (out of every 16 segments)
with probability 0.96. This probability will reach 0.99 if
n=9. Therefore, the level of security can be adjusted by
tuning the values of n and N .

The successful cheating probability drops exponen-
tially when a peer attempts to cheat in multiple groups.
Even the probability is only 0.5 to detect cheating when
one segment is corrupted, the probability of successful
cheating goes down to 0.002 when one segment is cor-
rupted in 10 groups. Figure 3(b) shows that the probabil-
ity of successful cheating is 0.0008 when two segments
are corrupted in six groups. Thus, the computation (and
sometimes communication) overhead can be reduced to
half, and cheating can be detected with a very high prob-
ability at the same time.

5

One limitation of the above protocol is: if any packet
is lost, the requesting peer will not be able to verify the
entire segment containing the lost packet. An adversary
can intentionally drop one packet from each segment,
and the whole streaming process is vulnerable. To deal
with packet losses due to an unreliable transport proto-
col, we apply the following two techniques.

Multiple Hashes (MH). Efficient multi-chained
stream signature (EMSS) [16] achieves robustness
against packet losses by sending multiple hashes of
other packets with the current packet. We explore
the similar idea to achieve robustness of our scheme.
In this approach, the peers send each packet pij =

[Mij , Hi,j+1%l, . . . , Hi,j+t%l], where t defines the loss
threshold, and Mij is the data of j-th packet for segment
i. Like Golle et al. [7], we can insert hashes in strategic
locations in a segment so that the chain of packets are
more resilient to bursty packet losses.

To verify the packets of a segment si, peer P0 checks
which packets of the segment it received and which of
them are lost. When a packet is lost, its hash will be
found in other packets unless total packet loss of a seg-
ment exceeds the threshold t. P0 computes hashes of
packets received, and uses the hash provided by the
sending peer for lost packets. These values are plugged
in Equation (1), and if this digest matches the digest pro-
vided by the server, the peer accepts the data otherwise
it rejects them.

We provide an example to clarify how to use the digest
scheme in a lossy environment. Let, l = 5 and t = 2.
P0 receives h(Ki, Hi1, Hi2, Hi3, Hi4, Hi5,Ki) from
the server. The sending peer sends [Mi1, Hi2, Hi3],
[Mi2, Hi3, Hi4], [Mi3, Hi4, Hi5], [Mi4, Hi5, Hi1],
[Mi5, Hi1, Hi2]. If first and second packets are lost,
P0 verifies using hashes Hi1 and Hi2 provided by the
sending peer with 4th and 5th packets, and computing
hashes for rest of the packets. This example can tolerate
up to two packet losses out of five packets. If three
packets are lost, the peer has to reject of five packets
of this segment because it can not verify the other two
packets.

It means we allow t packet losses out of l packets of
a segment and we perfectly checks the integrity of rest
l− t packets. This scheme increases the communication
overhead during download by t×|H(.)|

|p| , where the |H(.)|

is size of a hash function and |p| is size of a packet.
Using more packets per segments reduces the allowable
packet loss keeping the threshold same. The threshold
t = 3 for segment size 16 packets can tolerate almost
20% packet loss. It is possible to tune the system by
changing the value of t and l.

Forward Error Correction (FEC). Park et al. [13]
introduced erasure code to encode digests and signatures
instead of data block. We apply similar idea to encode
the digests using Reed-Solomon code. Efficient imple-
mentation of Reed-Solomon code has been reported in
[1]. For each segment, the peers encode the digests into
a packets out of which b packets are sufficient to de-
code the digests. This scheme is robust against bursty
packet losses because any b packets can recover the di-
gests of all a packets. However, if less than b packets
are available to the receiver, the whole segment can not
be verified. If b digests are available, P0 first decodes
the digests, and then verifies the integrity of the received
packets of a segment using Equation (1).

We apply FEC to all our protocols. In Section 4, we
compare the performance of our protocols (with FEC)
and SAIDA.

3.2 One Time Digest Protocol (OTDP)

To eliminate the downloading of digests in Step 1 of
Figure 2, we propose the One Time Digest Protocol
(OTDP). In this protocol, the server generates the digests
as shown in Equation (1) for a set of keys K. The server
distributes all digests to different peers off-line. These
are the peers who want to be a supplier in any stream-
ing session. A suitable caching technique can be used
to distribute these digests. The keys are not given to the
peers. A peer can not alter any digest because it does not
know the keys. The OTDP modifies the basic protocol
as follows:

• Step 1: When P0 requests a media file, it searches
the P2P network to determine the supplying peers.
P0 authenticates itself with the server.

• Step 2: The server provides P0 a set of keys based
on the search results.

• Step 3: P0 tells peers to send data and digests.

6

H6

1615141312111098765431 2

H4H3H2H1

P1 P3P2

H7H5

3126252221191817 3230292827242320

H15

H13 H14

H12H11H10H9

H8

Figure 4: Tree structure of 32 packets that constitute 8 segments. P1, P2, and P3 are members of an active set at
different part of streaming session. P1 is assigned to provide digests that are required to verify first two segments. P2

provides necessary digests for next four digests and P3 provides the rest. For example, P1 sends H1, H2, H10, and
H14 to verify first two segments. P2 and P3 independently act in a similar fashion.

• Step 4: Each peer Pi sends both data and digests to
P0.

• Step 5: P0 verifies each segment with appropriate
keys.

In OTDP, P0 downloads only a set of keys which is
fairly small in volume comparing with the digests of all
segments. The integrity verification is secure due to the
property of secure hash function. Error correction codes
are used to protect digests over lossy links. The proba-
bilistic verification can be used to reduce computation
overhead of P0. The limitation of OTDP is that one
digest can be used only once. When a set of keys is
revealed, these keys can not be used later; otherwise a
peer can forge digest. However, the cache of media data
that a peer has is reusable. When a peer wants to be a
provider, it collects a fresh set of digests from the server
off-line. The server is required to have an efficient key
management scheme to assign keys to different parts of
a movie. When some segments are used in streaming,
the server will have to invalidate those keys and digests.

3.3 Tree-based Forward Digest Protocol
(TFDP)

To avoid the digest download in Step 1 of the BOPV
protocol and to reuse the same digests over time, we pro-
pose Tree-based Forward Digest protocol. This protocol
uses Merkle’s tree, and is similar to Tree-chaining pro-
posed by Wong and Lam [21] for multicast flows. How-
ever, our protocol does not sign the root of every subtree
belongs to each segment. We only compute digests to
form the Merkle’s tree. Another difference is that our
protocol creates one tree for a media file, instead of a
separate tree for each segment.

In TFDP, a set of digests is downloaded first before
downloading the corresponding segments. This peri-
odical download of digests distributes the communica-
tion overhead over the whole streaming time and over
all peers participated in the streaming. This protocol is
mostly designed to stream a media file that is known be-
forehand.

Initially, the server generates the Merkle’s signature
tree for a media file. The leaves of the tree are packets
of a segment. All non-leaf nodes of the tree represent
digests of leaves of their corresponding subtrees. The
server enforces a minimum number of segments to cache

7

at each peer so that the overhead of sending extra digests
is amortized over a group of segments. During a stream-
ing session, Nmin digests are downloaded before down-
loading the original segments. The parameter Nmin is
used to adjust the overhead to verify data integrity. A
high value of Nmin will reduce the overhead, however,
it will delay the streaming session.

We provide a simplified example with 32 packets that
are part of 8 segments. Let P1 is assigned to provide
the digests of first two segments, P2 provides digests of
next four, and P3 provides the rest as shown in Figure 4.
From previous section, we know that a segment is down-
loaded from a set of active peers P

act. P1, P2, and P3

are members of P
act at different part of the streaming

session. When P0 wants to download segments from
P

act, P1 first provides all digests to compute the digest
of the root. In this case, those are H1, H2, H10, and
H14. P0 computes H9 from H1 and H2, H13 from H9

and H10, and H15 from H13 and H14, and then verifies
with the digest supplied by the server. If there is a match,
the belief in H15 is transferred to all hashes provided by
P1. Later, the data sent by the active set P

act is verified
segment by segment using H1 and H2. P2 and P3 act
independently in a similar fashion.

Figure 4 is a binary tree if we exclude the leaves. Each
leaf is a packet, and the parent of the leaves represent
the digests of the segments that contain the packets. The
digest of the segment is obtained by taking hash of all
packets using Equation (1). The size of a segment needs
to be chosen carefully to ensure that it does not introduce
delay to collect all packets of a segment. All the seg-
ments (internal nodes) can be arranged as a d-ary tree.
The height of the tree will be logd

F
l

, where F is the
size of the media file. The extra digests required to ver-
ify each segment depends on the height of the tree. It
requires (d−1)

⌈

logd
F

Nminl

⌉

digest to verify a group of
Nmin segments (Theorem 1). The theorem also proves
that it requires the lowest number of extra digests in the
verification process when the tree is binary. Figure 5
shows that number of extra digests required to verify
a group of Nmin segments is minimized when d = 2.
Higher value of Nmin can reduce the required number
of digests, however, it might increases delay to down-
load extra digests before downloading data.

Theorem 1 The TFDP requires (d− 1)
⌈

logd
M
N

⌉

extra

0 20 40 60 80 100 120 14015

20

25

30

35

40

45

50

55

60

Nmin

R
eq

ui
re

d
di

ge
st

s
pe

r g
ro

up

d=2
d=4
d=8

Figure 5: Number of digests required to verify the same
number of segments using trees with different bases.

digests to verify a group of N segments out of total M

segments using a d-ary tree with M leaves. Moreover,
the number of extra digests required is minimum for d =

2.

Proof: See Appendix. �

P
j

1. A
uthentication

3.

3.
4.

5. Verify Digests

2. D
igest of the root

3.
Req

ue
st

fo
r D

ige
sts 4.
Dige

sts

6.
Req

ue
st

fo
r D

ata

7.
Data

7.
4.

6.

i

�������������������������

�������������������������

�����
�����
�����

�����
�����
�����

Hollywood

P0

P

Figure 6: Steps of the TFDP to receive data and verify
digests by peer P0.

Now, we discuss the steps of the tree-based forward
digest protocol. The TFDP runs as follows (Figure 6):

• Step 1: P0 authenticates itself to the server.

• Step 2: The server provides P0 the digest of the root
of the Merkle’s tree.

• Step 3: P0 tells each peer Pi out of the active set
P

act to forward the digests that are required to ver-
ify the Nmin segments assigned to the active set.

8

• Step 4: Peer Pi provides the digests of all leaves
of the subtree it has and digests of all other inter-
nal nodes to compute the root. These digests are
obtained from the server off-line.

• Step 5: If the computed digest at P0 matches the
root digest obtained from the server, P0 will allow
Pi to send the data. P0 can trust the digests of each
segment of the Nmin segments because the com-
puted digest matches the digest of the root.

• Step 6: P0 signals the peers that the digests are fine,
and requests them to send data.

• Step 7: The peers send data, and P0 can verify ev-
ery segment individually.

To reduce the delay in Step 4, we can tune the value of
Nmin. For example, if Nmin is 64 segments, then Step 4
downloads Nmin+

⌈

log(F
Nminl

)
⌉

digests, which is equal
to 75 digests i.e. 1500 Bytes for our example. Down-
loading this digest takes very little time for P0. All di-
gests are downloaded using TCP to ensure none of them
is lost. The communication overhead is proportional to
the height of the tree.

An important advantage of TFDP is that download-
ing digests is distributed over all peers. The TFDP re-
quires to verify only one signature for the whole media
file where as Tree chaining or SAIDA requires to verify
one signature for each segment. This scheme does not
use separate key for each segment or peer. Instead, a
unique identifier is used for each movie to compute the
digests.

4 Analysis and Comparison

In [13], the authors show that SAIDA performs better
than EMSS [16] and augmented chaining [7] to toler-
ate bursty packet loss. We compare our three proto-
cols with SAIDA and Tree chaining [21]. We evalu-
ate the overhead of Block-Oriented Probabilistic Veri-
fication (BOPV) with its variations that integrate multi-
ple hashes (MH) and FEC codes. The One Time Digest
Protocol (OTDP) and Tree-based Forward Digest Proto-
col (TFDP) use FEC to achieve robustness against bursty
packet losses.

We compare both communication and computation
overhead among all protocols. The communication
overhead is the extra bytes per packet P0 requires to
download from other peers and the server to verify data
integrity. The computation overhead (at the receiver) is
due to hash computation, signature verification, and FEC
decoding. Before the comparison, we show the overhead
computation for each protocol.

Tree chaining does not require to download any ref-
erence digest from the server, however, they require
to download the public key (usually 128 bytes) of the
server to verify the signature. The receiving peer P0

downloads l log l digests for each segment, where l is the
size of a segment in terms of packets. Each packet car-
ries one 1024-bit signature. Thus, for each segment P0

downloads 20l log l + 128l bytes. All flavors of BOPV
download one digest and one key from the server for
each segment. The downloading overhead from the sup-
pliers is high for multiple hashes. The OTDP down-
loads only keys from the server. Besides that BOPV
and OTDP have similar communication overhead. The
TFDP downloads only one digest (20 bytes) from the
server. However, it needs 1 + 1

Nmin
log(M

Nmin
) extra di-

gests for each segment. Again, digest of each segment
is encoded with FEC. We define α, the overhead due to
FEC as:

α =
total packets sent per block

total packets required to reconstruct the block
.

(2)

Thus, the total communication overhead of TFDP is
20(lα + 1 + 1

Nmin
log(M

Nmin
)) bytes per segment. Only

Tree chaining and SAIDA need to verify signatures. The
SAIDA downloads one signature per segment, and it
uses FEC. Thus, it requires (20l + 128)α bytes of over-
head for each segment. All schemes verify the integrity
of each segment based on the digest computation. Tree
chaining and TFDP have similar number of digest com-
putation because both of them use Merkle’s tree. Others
have almost same number of digest computation. Ta-
ble 1 provides a summary for different protocols.

Communication Overhead Comparison. In tree
chaining, each packet carries 20 log l + 128 bytes of ex-
tra information, which is significantly high. The SAIDA
reduces the communication overhead by amortizing a

9

Allow Download Download # of Hash # of Hash Sign at Verify sign Decode Security
packet server →P0 P→P0 computation computation server at peers at P0

loss (Bytes) (Bytes) at server at P0

Tree chaining YES 0 20Ml log l M(2l − 1) M(2l − 1) M M — deterministic
(1024 bit) +128Ml

BOPV NO (20 + K)Mv 20M Mv Mv — — — probabilistic
BOPV+MH YES (20 + K)Mv 20Mlt Mv(l + 1) Mv(l + 1) — — — probabilistic
BOPV + FEC YES (20 + K)Mv 20Mlα Mv(l + 1) Mv(l + 1) — — M probabilistic
OTDP YES KPm 20Mlα M(l + 1) Mv(l + 1) — — M probabilistic
TFDP YES 20 20Mlα + 20X 2Ml 2Mv(l + 1) — — M probabilistic
SAIDA YES 0 (20l + 128)Mα M(l + 1) M(l + 1) M M M deterministic

Table 1: Comparison among different schemes to authenticate a stream. M is total number of segment in a file, l is
the size of a segment in packets, v is the probability to verify a segment, α is defined in Equation 2, K is the size of a
key, Nmin is the minimum number of segment a peer caches, and X = M + M

Nmin
log(M

Nmin
).

20 40 60 80 100 120
20

25

30

35

40

45

50

55

60

65

70

Segment size (l)

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(B

yt
es

) Tree Chain
BOPV+MH
BOPV+FEC
OTDP
TFDP
SAIDA

(a) Communication overhead

20 40 60 80 100 120
20

40

60

80

100

120

140

160

Segment size (l)

C
om

pu
ta

tio
n

O
ve

rh
ea

d
(s

ec
)

Tree Chain
BOPV+MH
BOPV+FEC
OTDP
TFDP
SAIDA

(b) Computation overhead

Figure 7: Overheads among Tree chaining, BOPV with multiple hashes and FEC, OTDP, TFDP, and SAIDA for movie
Matrix of size, F=1.3 GB. The communication overhead is shown per packet and the computation overhead is for the
entire file. The BOPV+FEC and OTDP have same computation overhead. Left figure does not show Tree chaining to
highlight others.

signature over all packets of a segment. The BOPV
with multiple hash has high communication overhead
because each packet carries multiple digests of other
packets to tolerate packet loss. Our experiments show
that FEC requires less overhead than multiple hashes to
tolerate same bursty losses. The OTDP has the lowest
communication overhead, which is not surprising. This
protocol uses one digest and some extra decode infor-
mation for each packet, which is minimal for the verifi-
cation process. The TFDP builds a tree of height log M ,
which is larger than the height of the subtrees built by
Tree chaining. However, the TFDP reduces the over-
head by combining Nmin segments together to make a

group. Then, it downloads the necessary digests to ver-
ify all segments of the group. This reduces the height
of the verification tree from log M to log M

Nmin
. In ad-

dition, the TFDP does not use signature, which reduces
the overhead significantly. The SAIDA acts similarly as
TFDP, however, one signature per segment increases its
overhead.

Figure 7 shows the analytical comparison of differ-
ent protocols for the movie Matrix. Figure 7(a) shows
that communication overhead can be reduced signifi-
cantly if FEC is used to encode digests and signatures.
The Tree chaining has extremely high communication
overhead (208 B, for l=16, not shown in Figure 7). In

10

OTDP, each packet carries only 27B extra information.
The TFDP and BOPV (both with MH and FEC) have
more overhead than OTDP, however, less overhead than
the SAIDA. The overhead of these protocols are close to
each other when the segment size is large.

Computation Overhead. First, we describe the
setup that is used to compare the computation overhead
of all protocols. We use openSSL crypto library to cal-
culate SHA-1 hash, RSA sign, and RSA verify. The
Cauchy-based Reed-Solomon code [1] is used to encode
digests in our protocols and in SAIDA. Tornado code [4]
is a more efficient erasure code than Reed-Solomon code
to encode/decode bulk size data. Our goal is to compare
two protocols, and thus coding scheme does not affect
our objective. The computation time for hash, sign, ver-
ify, encode, and decode is obtained using a 700 MHz PC
with 256 MB RAM running Linux without any back-
ground process.

The BOPV with multiple hashes requires only M(l +

1) hash computation. The Tree chaining does not have
computation overhead for coding, however, it requires
one signature for each segment, which increases the
overhead significantly. The Tree chaining has M sub-
trees, and each tree evaluates 2l−1 hash function, which
is close to the value of TFDP. The TFDP requires to
compute highest number of hash functions 2M(l + 1),
which is twice as high as the computation for SAIDA.
Among all the schemes we compare, only Tree chaining
and SAIDA uses digital signatures.

Figure 7(b) shows that the BOPV with multiple
hashes has the lowest computation overhead. If FEC is
used, the computation overhead increases with the seg-
ment size, because the decoder needs to decode more
packets within a block. The computation overhead in
Tree chaining is reduced by caching digests carried by
previous packets. This cache is used to verify upcom-
ing packets of a block. The overhead decreases with
the segment size, however, its high communication over-
head makes this solution hard to deploy in P2P stream-
ing. Both TFDP and SAIDA uses coding to cope with
packet losses. The SAIDA has higher computation over-
head than TFDP because the SAIDA has to verify signa-
ture for each segment. Verifying a signature takes longer
time than verifying a digest. The TFDP has higher com-
putation overhead than BOPV (both with MH and FEC)

and OTDP because TFDP sends few more digests for
every Nmin segments. We prefer TFDP over them be-
cause, unlike BOPV, TFDP reduces the initial commu-
nication overhead between receiving peer and the server
and TFDP does not have the limitation of OTDP to use
each digest only once. On the other hand, the BOPV and
OTDP are less complex in nature.

5 Simulation and Implementation

We conduct simulations using the ns-2 [12] simulator.
In this simulation, one peer receives streaming media
from five peers at the same time. The inbound link of
the requesting peer is lossy. Like SAIDA, we use Two-
state Markov loss model to introduce bursty packet loss
in the shared link. The parameters of Markov model is
Pr{no loss} = 0.95 and Pr{loss} = 0.05. The shared
link incurs packet loss rate of 25%. We calculate the
fraction of verifiable packets by

V =
1

M

M
∑

i=1

number of verifiable packets in segment i
number of packets received in segment i

(3)

We compare SAIDA and OTDP in the simulation.
The TFDP uses TCP to download digests, and the rest
of the process is same as the OTDP regarding the com-
putation of V . The outcome of the simulation is shown
in Figure 8. The digests and signatures are encoded to
tolerate 37.5% packet loss rate. We observe that due to
burstiness, some segments have low packet verifiability.
The reason why OTDP performs better is that SAIDA
sends slightly more data than OTDP due to RSA signa-
ture for each segment.

We are developing CollectCast-based streaming sys-
tem, called PROMISE [8] to provide high quality me-
dia streaming. It exploits network dynamics, quality of
paths from sending peers to the receiver, and availabil-
ity of the peers to make a set of peers available that can
provide desired stream rate. Each of the proposed pro-
tocols can be plugged into PROMISE to verify data in-
tegrity in media streaming. We are evaluating our pro-
totype by conducting experiments in PlanetLab test-bed.
PlanetLab has hundreds of nodes in the USA, Europe,
and Asia. We use a Berkeley node as a receiver. Nodes

11

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 500 1000 1500 2000 2500 3000 3500

Fr
ac

tio
n

of
 v

er
if

ia
bl

e
pa

ck
et

s

Time (sec)

OTDP
SAIDA

Figure 8: Packets verification probability at the re-
ceiver. More than 97% received packets are verified
using OTDP. TFDP also has similar performance. The
TFDP and OTDP vary in getting the reference data to
verify integrity.

from Purdue, MIT, Boston University, UK, and Taiwan
are used as senders in this setup.

Figure 9 shows two PlanetLab experiments. Both can
tolerate up to 20% packet loss due to FEC. If the loss rate
is more than 20% for a certain time, an entire segment
of the packets is not verifiable. Both experiments have
similar loss rate. Exp 1 can verify almost all the pack-
ets throughout the experiment and thus the verification
probability is 1.0 for most of the time. Sometimes, the
loss goes as high as 40% and the probability goes down
to 0.9. In this case, we have to throw out couple of seg-
ments. Exp 2 experiences few more glitches than Exp
1. If the loss continues for a while, the supplier on the
congested path is replaced with a better one. The wide
area experiments shows that with FEC, the data integrity
verification scheme achieves very high probability.

6 Conclusion

For P2P media streaming, data integrity verification is
an important security issue. However, it receives less at-
tention than other P2P security issues. In this paper, we
propose efficient protocols to verify data integrity during
P2P media streaming sessions. Our probabilistic packet
verification protocol BOPV tunes the security and cor-
responding overhead. The proposed One Time Digest

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 50 100 150 200 250 300

Fr
ac

tio
n

of
 v

er
if

ia
bl

e
pa

ck
et

s

Time (Sec)

exp1
exp2

Figure 9: Packets verification probability at the receiver
in the wide area setup.

Protocol (OTDP) and Tree-based Forward Digest Proto-
col (TFDP) have very low communication overhead and
tolerate high packet losses with reasonable computation
overhead. The FEC codes can significantly reduce the
communication overhead to tolerate packet loss. How-
ever, we show that it increases the computation overhead
when many packets are aggregated into one block in or-
der to amortize a signature over large block. Our sim-
ulation and implementation results show that a peer can
verify 97% of packets even under a packet loss rate of
25%.

Acknowledgments

The authors would like to thank Mohamed Hefeeda for
PROMISE prototype, and Maleq Khan for his help to
prove Theorem 1.

References

[1] Cauchy-based reed-solomon codes. available at
http://www.icsi.berkeley.edu/˜luby/.

[2] E. Adar and B. Huberman. Free riding on gnutella.
First Monday, 5(10), Oct. 2000.

[3] D. Boneh, G. Durfee, and M. Franklin. Lower
bounds for multicast message authentication. In
Proc. of Eurocrypt ’01, Lecture Notes in Com-

12

puter Science, Vol. 2045, pages 437–452. Springer-
Verlag, 2001.

[4] J. W. Byers, M. Luby, M. Mitzenmacher, and
A. Rege. A digital fountain approach to reli-
able distribution of bulk data. In proc. ACM SIG-
COMM, Vancouver, Canada, Sept. 1998.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron,
and D. S. Wallach. Security routing for structured
peer-to-peer overlay networks. In proc. Symposium
on Operating Systems Design and Implementation
(OSDI ’02), Dec. 2002.

[6] R. Gennaro and P. Rohatgi. How to sign digital
streams. Technical report, IBM T. J. Watson re-
search center, 1997.

[7] P. Golle and N. Modadugu. Authenticating
streamed data in the presence of random packet
loss. In proc. Network and Distributed System Se-
curity Symposium (NDSS ’01), pages 13–22, Feb.
2001.

[8] M. Hefeeda, A. Habib, B. Botev, D. Xu, and
B. Bhargava. PROMISE: Peer-to-peer media
streaming using CollectCast. Proc. ACM Multi-
media ’03, Nov. 2003.

[9] B. Horne, B. Pinkas, and T. Sander. Escrow ser-
vices and incentives in peer-to-peer networks. In
proc. ACM Electronic Commerce (EC ’01), Oct.
2001.

[10] H. Krawcayk, M. Bellare, and R. Canetti. HMAC:
keyed-hashing for message authentication, RFC
2104, 1997.

[11] L. Lamport. Constructing digital signatures from
a one-way function. Technical report, SRI-CSL-
98, SRI International Computer Science Labora-
tory, Oct. 1979.

[12] S. McCanne and S. Floyd. Network simulator ns-2.
http://www.isi.edu/nsnam/ns/, 1997.

[13] J. M. Park, E. Chong, and H. Siegel. Efficient mul-
ticast packet authentication using signature amorti-
zation. In proc. IEEE Symposium on Security and
Privacy, May 2002.

[14] A. Perrig. The BiBa one-time signature and broad-
cast authentication protocol. In proc. ACM Confer-
ence on Computer and Communications Security
(CCS ’01), pages 28–37, Philadelphia, PA, Nov
2001.

[15] A. Perrig, R. Canetti, D. Song, and D. Tygar. Ef-
ficient and secure source authentication for mul-
ticast. In proc. Network and Distributed System
Security Symposium, (NDSS ’01), San Diego, CA,
Feb. 2001.

[16] A. Perrig, R. Canetti, J. D. Tygar, and D. X. Song.
Efficient authentication and signing of multicast
streams over lossy channels. In proc. IEEE Sympo-
sium on Security and Privacy, pages 56–73, Nov.
2000.

[17] L. Reyzin and N. Reyzin. Better than BiBa: Short
one-time signatures with fast signing and verify-
ing. In proc. 7th Australasian Conference ACSIP,
Sept 2002.

[18] R. L. Rivest, A. Shamir, and L. M. Adleman. A
method for obtaining digital signature and pub-
lic key cryptosystems. In Commnunication of the
ACM, pages 120–126, Feb. 1978.

[19] P. Rohatgi. A compact and fast hybrid signature
scheme for multicast packet. In proc. ACM Con-
ference on Computer and Communications Secu-
rity (CCS ’01), pages 93–100, Nov 1999.

[20] A. Rowstron and P. Druschel. Pastry: Scal-
able, distributed object location and routing for
large-scale peer-to-peer systems. In Proc. of the
18th IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware 2001),
Nov. 2001.

[21] C. K. Wong and S. S. Lam. Digital signatures
for flows and multicasts. In proc. International
Conference on Network Protocol (ICNP ’98), Oct.
1998.

Appendix

Proof: Theorem 1. The height of a d-ary tree T with
M leaves is logd M . The height of the subtree T1 with

13

N leaves is logd N . To verify the root of T1, we need
(d − 1) digests from each internal node of the tree T −

T1. The height of the tree T − T1 having M
N

leaves is
logd

M
N

. Thus, the total extra digests required to verify
N segments is (d − 1)

⌈

logd
M
N

⌉

.
To prove the second part, we show that higher value

of d of a d-ary tree requires more digests to verify
the same set of segments. It is sufficient to show that
d1 logd1

Y > d2 logd2
Y , for Y > 0 and d1 > d2 ≥ 2.

p

np
> 2p

2np , for some p ≥ 1 and n > 1

⇒ log
2

d2

log
2

d1

> d2

d1

, let p = log2 d2 and np = log2 d1.
As n > 1 ⇔ np > p ⇔ d1 > d2

⇒ d1 log
2

d2

d2 log
2

d1

> 1

⇒ d1

d2

logd1
Y

logd2
Y

> 1, for any Y > 0

⇒ d1 logd1
Y > d2 logd2

Y .
�

14

