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Abstract   Microsensors operate under severe 
energy constraints and should be deployed in 
large numbers without any pre-configuration. We 
construct a generalized self-clustering algorithm, 
called Low-energy Localized Clustering (LLC). It 
integrates the ideas of two self-configuring 
clustering algorithms: the Localized algorithm and 
the Low Energy Adaptive Clustering Hierarchy 
algorithm. LLC covers a range of behaviors from 
the better-clustering performance of the Localized 
method to the energy-efficient operation of the 
LEACH method. The main advantage of LLC is 
that it can be energy-efficient while maintaining 
localization. Data aggregation techniques such as 
summarization, finding representative data items, 
and pattern matching are proposed. Data 
aggregation is a necessity in microsensor 
networks, since transmitting huge volumes of raw 
data is an energy-intensive operation. Finally, 
security issues are discussed and an energy-
efficient Randomized Data Authentication 
algorithm is designed specifically for microsensor 
applications.  

Keywords  Sensor Networks, Microsensors, 
Self-configuring Clusters, Data Aggregation, 
Security in Microsensor Networks.   
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1  Introduction 
Advances in integrated circuit technology 

have enabled mass production of tiny, cost-
effective, and energy-efficient wireless sensor 
devices with on-board processing capabilities. The 
emergence of mobile and pervasive computing 
has created new applications for them. Sensor-
based applications span a wide range of areas, 
including remote monitoring of seismic activities, 
environmental factors (e.g., air, water, soil, wind, 
chemicals), condition-based maintenance, smart 
spaces, military surveillance, precision 
agriculture, transportation, factory 
instrumentation, and inventory tracking [Bulu01, 
Hein00b]. 

A microsensor is a device which is equipped 
with a sensor module (e.g., an acoustic, a seismic, 
or an image sensor) capable of sensing some 
entity in the environment, a digital unit for 
processing the signals from the sensors and 
performing network protocol functions, a radio 
module for communication, and a battery to 
provide energy for its operation [Hein00b]. 
Currently, microsensors typically consist of 8-bit 
4-MHz processors (80% of all microprocessors 
shipped in 2000 were 8-bit [Tenn00]), with slow 
10-Kbps communication, an 8-Kbyte read-only 
program memory, and a 512-byte RAM [Perr01]. 
These parameters ensure limited weight, size, and 
cost. We use the term sensor to refer to a 
microsensor. 
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When deployed in large numbers and 
embedded deeply within large-scale physical 
systems, sensors gain the ability to measure 
aspects of the physical environment in 
unprecedented detail [Bulu01]. Networking these 
sensors with the ability to coordinate amongst 
themselves in a large sensing task will 
revolutionize information gathering and 
processing. Large scale, dynamically-changing, 
and robust sensor colonies can be deployed in 
inhospitable physical environments such as 
remote geographic regions or toxic urban 
locations. They will enable low-maintenance 
sensing in more benign but less accessible 
environments such as large industrial plants, 
enemy terrain, aircraft interiors, etc. [Estr99]. 

In this paper, we use a cluster-based 
hierarchical architecture for sensor networks to 
achieve and support scalability. An architecture, 
and description of its components and their 
functionalities is given in Section 2. 

The large number of sensor nodes deployed 
for an application precludes manual configuration, 
and the environmental dynamics preclude design-
time pre-configuration [Cerp02]. Nodes will have 
to self-configure to establish a topology that 
enables communication and sensing coverage 
under stringent energy constraints. Two existing 
self-configuring clustering algorithms: the 
Localized algorithm [Estr99] and the Low-Energy 
Adaptive Clustering Hierarchy (LEACH) 
[Hein00] are analyzed in Section 3. While the 
Localized algorithm forms good quality clusters, 
LEACH focuses on using lower energy 
consumption in forming clusters. Integrating the 
ideas of these two algorithms, we build a 
generalized scheme called Low-energy Localized 
Clustering (LLC).  

Data aggregation is a good paradigm for 
wireless routing in sensor networks [Heid01, 
Itan00]. The idea is to combine the data coming 
from different sources and routes. This eliminates 
redundancy, minimizes the number of 
transmissions and thus saves energy [Kris02]. 
Beamforming [Oppe78, YaoH98] and functional 
decomposition [H00b] are two ways of 
aggregating sensor data. Their limitations are 
identified and a few other data aggregation 
methods are proposed in Section 4. 

 The data security requirements related to 
sensor networks such as confidentiality, 

authentication, integrity, and freshness [Perr01] 
are presented in Section 5. We also propose an 
energy-efficient Randomized Data Authentication 
algorithm. 

 
2  Cluster-based Architecture for a 
Sensor Network 

Sensor networks are large-scale data-intensive 
systems that manage parallel and real-time 
communications in dynamic environments. To 
support scalability we use a cluster-based 
hierarchical structure (see Fig. 1). As the number 
of basic sensors is increased, more clusters can be 
formed without increasing the processing or 
communication loads on individual cluster heads. 
The three levels in the hierarchical design of this 
architecture consist of a base station at the top 
level, cluster heads at the middle level, and basic 
sensors at the leaf level. 

 

The base station is a machine capable of 
analyzing the data collected from the cluster heads 
and displaying a global view of events being 
monitored. It is responsible for initiating and 
managing the network and is ultimately the 
gateway of the sensor network to the Internet or 
some other network.  

Basic sensors are deployed in large numbers 
across an area of observation. Their primary 
function is to collect data from their surroundings. 
A direct communication between basic sensors 
occurs only at the time of cluster formation or 
cluster reconfiguration. Otherwise, the main 
stream of communication consists of conveying 

  cluster of sensors 

basic sensor 
(Level 1) 

cluster head 
(Level 2) 

base station 
(Level 3) 

… … …

 

Fig. 1.  A cluster-based hierarchical architecture 
for sensor networks. 

 … … 

… 

…
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data results to the corresponding cluster head. 
Before deployment, each basic sensor is given an 
id that uniquely identifies the sensor. Similarly 
a security code, which could be implemented as 
a hardware-embedded signature on the 
microsensor chip, is assigned to each sensor. It is 
used to authenticate data sent by the sensor node. 

Cluster heads are selected from among the 
basic sensors by a self-configuring mechanism as 
detailed below. The role of a cluster head is to 
collect data from the basic sensors and manage 
them. Basic sensors in a particular cluster register 
themselves with their respective cluster head. The 
registration database is maintained by each cluster 
head to keep track of the range and type of 
information it is receiving. This database may also 
be used for other maintenance purposes such as 
determining the number of basic sensors 
supported and location lookup of sensors. The 
cluster heads become immediate points of contact 
for basic sensors for communication and reporting 
purposes. The heads collect data from the basic 
sensors, aggregate it and send to the base station. 

 
3  Self–configuring Sensor Clusters 
3.1  The Need for Clustering 

As mentioned in the introduction, sensors 
must be able to self-configure into clusters. 
Clustering allows sensors to efficiently coordinate 
their local interactions in order to achieve global 
goals. Localized clustering can contribute to 
a more scalable behavior. As the number of nodes 
increases, it leads to improved robustness and 
more efficient resource utilization for many 
distributed sensor coordination tasks [Estr99].  

Localization saves transmission energy since 
it allows communicating with a closer local 
coordinator instead of a more distant base station 
[Hein00a]. To transmit a signal over a distance d, 
the required energy E is proportional to dm where 
m is 2 in free space and ranges up to 4 in 
environments with multiple-path interference 
local noise [Deli00].  

An advantage of using clusters is data 
aggregation at the cluster heads, in which the 
collected data from the basic sensors is aggregated 
and sent to the base station. In this way, the 

amount of energy that would have been required 
to transmit huge volumes of data is reduced.  

3.2  Analysis of Two Algorithms for Sensor 
Clustering  

We introduce a self-configuring clustering 
algorithm, which is a generalization of the 
Localized and LEACH algorithms. Before 
presenting the new algorithm, some details of 
these two need to be explained. 

The Localized algorithm to form self-
configuring clusters of the sensor nodes is 
presented in [Estr99]. All sensors start by sending 
advertisements to sensors within a pre-specified 
radius defined in terms of physical hops. Sensors 
wait after setting their wait timer to values 
proportional to their radius. This allows 
advertisements from various sensors to reach each 
other. At the end of the wait period, sensors start 
a promotion timer which is set to be inversely 
proportional to the sensor’s remaining energy and 
the number of other sensors from whom the 
advertisement were received. That is, the sensors 
in the dense regions and with higher energy have 
smaller timeout values. When a sensor’s 
promotion timer expires, it promotes itself to 
Level 2 (a cluster head), and advertises itself as 
a cluster head by broadcasting the list of its 
potential child (basic) sensors.  The list consists of 
the basic sensors whose advertisements it 
previously received. If a basic sensor appears in 
the lists of potential children of several cluster 
heads, it chooses the closest one as its cluster 
head. Now it cancels its own promotion timer (if it 
is still running), and thus drops out of the election 
process. If a cluster head does not have any 
children, or if its energy level drops below 
a certain threshold at some point, it demotes itself 
to a basic sensor. The process is repeated 
periodically. Thus, any change in network 
conditions or in sensor energy levels results in re-
clustering. 

The Low Energy Adaptive Clustering 
Hierarchy (LEACH) algorithm for self 
configuring clusters is proposed in [Hein00a]. 
Periodically, every basic sensor elects itself 
a cluster head with a certain probability. The 
probability for node n in round r is defined as:   



   
   

4 

( )
�
�
�

��
�

�

∈�
�

�
�
	


−= Gn
P

rP

P

nT  if     

otherwise       0

1
mod1  

where P is the predefined percentage of sensors 
that should become cluster heads, and G is the set 
of nodes that have not been cluster heads in the 
last 1/P rounds. In every 1/P rounds each node is 
elected a cluster head once. Thus, the energy-
intensive tasks of cluster heads are evenly 
distributed among the sensor nodes. The elected 
cluster heads broadcast an advertisement message 
to the rest of the nodes. A basic sensor selects its 
cluster head based on the strength of the received 
advertisement signal. 

The main disadvantage of the Localized 
algorithm is that every node needs to broadcast 
messages and manage wait and promotion timers 
in each round of a cluster head election process, 
which requires a significant amount of energy. 
The LEACH algorithm is energy-efficient but the 
expected number of clusters is predefined. The 
authors presented an experimental result showing 
that the optimal number of cluster heads to 
minimize energy dissipation in data 
communication is approximately 5%. This value 
has been used to determine the predefined number 
of clusters. Unfortunately, when the sensors are 
highly dispersed, the percentage of sensors might 
not be sufficient to cover the whole area of sensor 
deployment. Even if a full coverage can be 
accomplished, the area covered by a cluster could 
increase to a point where long-range 
communication, and thus higher energy, is 
required. In contrast, since the Localized 
algorithm sends advertisements only to the 
sensors within a specified radius, the maximum 
area of a cluster is bounded, and there is no long-
range communication that exceeds this radius. 

Since the LEACH algorithm selects cluster 
heads randomly, in some instances all selected 
cluster heads can group into one end of the region. 
The sensors at the other end might not hear any 
cluster heads, and hence remain isolated from any 
cluster. In the Localized algorithm there can be no 
isolated groups of sensors.  Every sensor has 
a promotion timer, which expires at some time 
and, if it does not hear from any other cluster 
head, it promotes itself to a cluster head.    

3.3 The Low-energy Localized Clustering 
(LLC) Algorithm 

We propose an algorithm called Low-energy 
Localized Clustering (LLC) that integrates the 
ideas of the algorithms discussed above to reduce 
the required energy in an election process (to 
improve upon the Localized algorithm), and to 
reduce the chance of having isolated sensors and 
to keep the number of cluster heads variable (to 
improve upon LEACH). The algorithm works in 
two phases: (a) a specified percentage of the 
nodes are randomly selected to be candidates for 
being cluster heads; (b) only the selected 
candidates compete to become cluster heads. 
Details of these two phases are given below. 

Candidate selection   Every node selects itself to 
be a candidate for a cluster head with a probability 
p. The probability p is proportional to the 
remaining energy of the node. Thus a sensor with 
higher energy has a greater chance to become a 
candidate. 

Let t be the estimated lifetime of the system, 
which is estimated before deploying the sensors, 
and tp be the time passed since deployment of the 
sensors. The estimated total energy (the sum of 
the remaining energies of all sensors) remaining 
in the system becomes: 

( )
t

ttne
e pi
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−
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where ei is the initial energy of each sensor node 
and n is the number of sensors. If the desired 
number of candidates is x% of the total number of 
sensor nodes, 
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where er is the remaining energy of the sensor 
node. 

Cluster head election  The cluster heads are 
elected from the pool of candidates following the 
Localized algorithm. There are two exceptions: 
(a) only the candidate sensors compete while the 
remaining sensors sleep, and thus conserve 
energy, until the election process is completed; 
and (b) after a promotion, a node declares itself 
a cluster head but does not publish any potential 
children list. The other sensors (both former 
candidates and non-candidates) select their cluster 
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heads based on the strength of the signal of these 
declaration messages. 

LLC overcomes the shortcomings of the two 
analyzed algorithms. Suppose that 20% of sensors 
are selected as candidates. Then, 80% of the 
sensors do not participate in the election process 
thus saving 80% of energy that is required to 
broadcast advertisements in the election process in 
the Localized algorithm. In LLC there is a slight 
chance of having an isolated group of sensors. If 
LEACH optimally selects 5% of the nodes as 
cluster heads, then in LLC the probability of 
selecting a candidate from an isolated group 
increases fourfold (for the candidate ratio set to 
20%). If any sensor in the isolated group is 
selected as a candidate, the group will have 
a cluster head. The cluster radius is bound by 
radius hops as in the Localized algorithm. 

LLC is an adaptive generalization of the 
Localization and the LEACH algorithms, with the 
candidate ratio being the control parameter.  
When the ratio is 100%, LLC behaves exactly like 
the Localized method, since all of the sensors are 
competing to become a cluster head. When the 
ratio is 5%, the algorithm operates nearly 
identically to the LEACH method, since for a low 
number of candidates nearly all will become 
cluster heads.  
 

4  Sensor Data Aggregation 
4.1  Motivation and Methods 

Data aggregation is a paradigm for wireless 
routing in sensor networks [Heid01, Itan00]. The 
idea is to combine the data coming from different 
sources and routes. This eliminates redundancy, 
minimizes the number of transmissions, and saves 
energy [Kris02]. Automated methods of 
combining or aggregating the data into a small set 
of meaningful information are required [Hein00b]. 

Sensor data is different from data associated 
with traditional wireless networks since it is not 
the data itself that is important. Instead, it is the 
analysis of data, which allows an end-user to 
determine something about the monitored 
environment, which is the important result derived 
from a sensor network [Hein00b]. For example, if 
sensors are monitoring temperature, the 
measurements from all sensors in a cluster need 

not be transmitted. Temperatures at different 
points of a certain area are highly correlated and 
the end users are only interested in a high-level 
description of the events occurring. The type of a 
high-level description of data or data aggregation 
that needs to be performed depends on the 
monitored events and user requirements. In this 
example, only the minimum, maximum, or the 
average of the temperatures might be needed. 

One method of data aggregation, called 
beamforming [Oppe78, YaoH98], combines 
signals from multiple sensors by calculating the 
weighted sum of the signals as follows: 

[ ] [ ] [ ]��
= =

−=
N
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where [ ]nsi  is the signal from the ith sensor, 

[ ]nwi  is the weighting filter for the signal from 
the ith sensor, N is the number of sensors, and L is 
the number of taps in the filter. Although 
beamforming has a good property that the 
weighting filters can be chosen to satisfy an 
optimization criteria, such as minimizing mean 
squared error or maximizing signal to noise ratio, 
the weighted sum of signals may not be useful for 
many applications.   

A functional decomposition can sometimes be 
used to perform local data processing on a subset 
of data [Hein00b]. The base station receives all 
data X and processes it to find f(X). The function f 
can sometimes be broken up into several smaller 
functions f1,  f2,  f3, …, fn that operate on subsets of 
data X1, X2, X3, …, Xn such that 

f(X) ≈ g(f1(X1), f2(X2), f3(X3), …, fn(Xn)). 

Even though many data aggregation functions 
can not be decomposed in such a manner, we can 
find some applications where special data 
aggregation techniques can be applied for local 
data processing in order to reduce the 
communication.                                                                                                                                                                                                   

Various aggregation techniques can be 
applied to the proposed architecture of the sensor 
network. The following methods are proposed.  

4.2  Data Summarization  

For some data types and applications, only the 
summarized information is needed to serve the 
purpose of monitoring environmental events. 
Different summarizations are suitable for different 
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applications. They include average, sum, 
minimum, maximum, median, mode, standard 
deviation, quartiles, and percentiles. In addition, 
one can use the number of nodes detected to have 
crossed a threshold and the total number of active 
nodes associated with the cluster head. For some 
applications, instead of using a single summarized 
value, a combination of the above values can be 
employed. 

4.3  Finding Representative Data Items  

The data can be summarized by a predefined 
number of representatives. Let n be the number of 
active basic sensors associated with a cluster head, 
and k be the desired number of representatives. 
The k-means algorithm [Seli94] is an iterative 
procedure that has received considerable attention 
in clustering (data clustering) analysis, since it 
produces a good minimization of the sum-of-the-
squared-error, or the total variance, function. This 
algorithm first randomly selects k initial cluster 
centers. Next k clusters are formed by associating 
each data point with its closest cluster center. The 
centroids, or means, of these k clusters become the 
new cluster centers. The above procedure is 
repeated until there is no change in the cluster 
memberships. 

Each cluster center is the representative of 
data items in its cluster. The cluster heads send 
these k representatives to the base station. (Note 
that cluster centers represent data, while cluster 
heads represent sensors.) If desired, each 
representative can be accompanied by the number 
of data items in its cluster or other parameter, 
which can be used to indicate the weight or 
importance of the representative. 

The k-means algorithm converges very fast 
when the dimension of the data is small.  For 
example, for a temperature sensor network the 
dimension is one, whereas for a sensor network 
measuring both temperature and humidity 
dimension is two. Usually the dimensionality of 
the sensor data is small. This fact justifies why the 
k-means algorithm is a suitable clustering method 
for sensor data.  

4.4  Pattern Matching  

In some applications, the basic sensors may 
find the pattern of data measured over a 
predefined time interval and send only this pattern 

information to the cluster head, instead of sending 
the raw data. Cluster heads collect patterns from 
their basic sensors and select the critical patterns 
that describe some critical events. These critical 
patterns can be sent to the base station. 

For example, consider an application with 
sensors deployed to predict storms in a certain 
area. Each basic sensor measures temperature and 
pressure and collects data. Periodically, a basic 
sensor finds the pattern of changing temperature 
and pressure that is the best fit for collected data. 
Six example patterns for pressure changes are 
depicted in Fig. 2.   

 

Information sent periodically to the cluster 
head is concise. For example, we can send “c” 
denoting the sudden fall pattern of Fig. 2c. The 
sudden fall, sudden rise, and fluctuation in pattern 
pressure are categorized as critical patterns that 
forecast a storm. Similar patterns are defined for 
temperature. Each cluster head selects the patterns 
that predict a storm and sends them to the base 
station. The base station collects and analyzes the 
critical pressure and temperature patterns. 

4.5  Tradeoffs between Data Aggregation 
and Communication 

The main purpose of data aggregation is to 
reduce the required communication at various 
levels, and in turn to reduce the total energy 
consumption. Data aggregation saves energy if the 
energy required to perform aggregation is lower 

 y 

a) constant 
x 

y 

b) decreasing 
x 

y 

c) sudden fall

y 

d) increasing 
x 

e) sudden rise 

y 

x 

y 

b) fluctuating

a) constant               b) decreasing           c) sudden fall  

d) increasing             e) sudden rise          f) fluctuation  

Fig. 2. Possible pressure patterns. Time is plotted on 
the x-axis and pressure on the y-axis. 
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than the energy required to send raw data to the 
upper level. Different data aggregation techniques 
require different amounts of energy to process raw 
data. The choice of data aggregation method 
depends not only on the application requirements 
but also on the relative energy savings obtained by 
using this method. 

Another tradeoff between data aggregation 
and communication involves the time required to 
perform data aggregation at cluster heads or basic 
sensors, and time required to transmit raw data. 
There is a delay associated with processing data at 
sensor nodes due to their limited processing 
power. Depending on the application, partial 
processing of data can be done at the sensor nodes 
to maximize the data processing throughput, while 
still satisfying the real-time limitations of system 
operations.  
 

5  Security Issues 
5.1  Requirements and Solutions 

The requirements for security in a sensor 
network, as stated in [Perr01], include: data 
confidentiality, data authentication, data integrity, 
and data freshness. 

Data Confidentiality To assure data 
confidentiality within sensor levels, the standard 
encryption approaches can be employed. 
However, between sensor levels we propose 
adopting a strong security mechanism, with 
security protocols unique to each pair of levels.  

 Data Authentication Authentication is the 
mechanism by which the receiver of a message 
can ascertain its origin [Schn95]. Most of the 
existing authentication protocols require a trusted 
third party that generates secret keys for the 
communicating parties. Using a third party is not 
suitable for authentication of sensor nodes, 
deployed on a temporary basis and frequently 
reconfigured. Moreover, no IP address, required 
to communicate with a third party, is associated 
with a sensor node. 

We propose the Randomized Data 
Authentication algorithm suitable for low-energy 
sensor networks. Every sensor node is given 
a unique id and a security code. All of the id–
security pairs are stored at the base station. During 

data transmission from the basic sensors, the 
cluster heads periodically verify the sender of the 
data item as follows: 
a. When a cluster head receives a data item from 

a basic sensor, it generates a random number 
x, where 0 ≤ x ≤ 1. 

b. If x ≤ p, the cluster head requests the sensor to 
send its security code. Here p is the 
predefined probability that a cluster head 
requests the sender for its security code. 

c. After receiving the security code, the cluster 
head sends the id–security code pair to the 
base station for verification. 

Energy of sensors is saved by not 
authenticating each data item. Also the risk of 
compromising security is reduced, since less 
frequent random authentication gives attackers 
fewer opportunities to capture a security code. On 
the other hand, more intrusions may remain 
undetected. However, in most cases a few 
intrusions can be tolerated. Since data is being 
gathered from a large number of sensors, 
a relatively few malicious data items do not affect 
the overall results significantly. In this algorithm, 
repeated intrusions are most likely to be detected. 
In each sequence of 1/p intrusions, we expect one 
intrusion to be detected. The probability p can be 
dynamically adjusted either to increase detection 
probability, e.g. when more intrusions are 
detected in the network, or to decrease detection 
chances, e.g. when no intrusions were experienced 
for a long period of time. 

Data Integrity     Data integrity in the 
networking environments includes processing data 
integrity, database (data storage) integrity, and 
data communication integrity. Standard 
approaches to data processing and database 
integrity can be used, since they are not more 
critical in sensor networks than in other 
networking environments. However, data 
communication integrity becomes even more 
critical, if only due to a sheer volume of 
transmitted sensor data. To protect data in transit 
from intentional attacks, we propose using the 
above Randomized Data Authentication 
algorithm.  This solution is adequate, since 
authentication is a stronger property than data 
integrity for data communication [Perr01] (under 
the assumption that the sender is not 
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compromised). The standard protection against 
accidental failures includes using the error 
detection and correction facilities of the TCP/IP 
protocol suite [Perr01]. 

Data Freshness Data freshness means 
maintaining currency of data and ensuring that old 
messages do not masquerade as the current ones. 
There are two types of freshness: strong and weak 
[Perr01]. Strong freshness is used for time 
synchronization within the network, while weak 
freshness is required by sensor measurements. 

5.2  Vulnerabilities in Sensor Networks 

Vulnerabilities specific to sensor networks 
result from their capabilities to self-configure and 
from the wireless communication facilities 
embedded within the nodes. Potential solutions 
for prevention, fast detection of attacks, graceful 
degradation, and recovery should include both 
threat-avoiding and threat-tolerant approaches. 

Some attacks may be prevented by using 
a tight authentication procedure during the 
registration of basic sensors and cluster heads 
with the base station. Otherwise, attackers may be 
able to deploy counterfeit sensors or take over 
sensors, even cluster heads. Even such a security 
breach should not enable an attacker to take over 
the entire network. 

Data integrity and consistency mechanisms 
[Amma97] can be employed for detecting 
intrusions, especially in cases when an attacker 
wishes to corrupt data. For instance, in the field of 
precision agriculture, an adversary who wants to 
destroy crops could cause sensors to report 
acceptable levels of soil moisture, while actually 
the field needs watering. The integrity/consistency 
checker would detect bad data reports and alert 
the base station or the cluster head. 

Under the worst scenario, an attacker gains 
control of the base station and compromises the 
entire network. This is dealt with by network-wide 
security means, including intrusion detection 
mechanisms of the base station and possibly the 
wider network. This well-researched issue is 
outside the scope of this paper, since we are 
concentrating on enforcing security at sensor node 
levels. 

 

6  Conclusions 
The proposed self-configuring clustering 

algorithm, called Low-energy Localized 
Clustering (LLC), is a generalization of the 
Localized and the LEACH algorithms. The ratio 
of candidates for cluster heads is the parameter 
used to control the behavior of LLC. The main 
advantage of LLC is that it can be energy-efficient 
while maintaining localization.        

A number of data aggregation techniques, 
such as summarization, finding representative data 
items, and pattern matching have been proposed 
to provide an efficient way of processing data in 
a sensor environment.  

A novel Randomized Data Authentication 
algorithm, which uses minimal energy as required 
in microsensor applications, has been developed. 
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